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Operating robotic scientific spacecraft is a complex process. To reduce operating
costs and risks, there has been much discussion of the requirements for automating spacecraft
operations as well as automating the spacecraft themselves. It is not always easy to determine
which features to automate in space, which ones to automate on the ground, and which functions
would best remain in human hands. Higher-capability commercial and military satellites will also
have technology needs of their own, and more synergy between these developments and the
development of scientific satellites will also be a future trend. This paper discusses the driving
forces behind spacecraft automation, and identifies relevant technology areas and needs.

1. Introduction

The future of spacecraft operations wifi be a challenging one as missions are
developed to reconnoiter the remaining yet-unexplored bod ies in the solar system, and to go back
to planets that were previously targets of quick flybys. These missions will give us a more
complete understanding of the other planets in the solar system to understand what is common
across all planets and what is unique about Earth. More sophisticated astronomical and Earth-
observing scientific spacecraft will be providing us with enormous amounts of data to allow an
understanding and accurate mode]ling  of large-scale climactic and geologic phenomena, In turn,
this will enable prediction of the short-term local results of such phenomena (such as drought,
floods, hurricanes, earthquakes, volcanic activity, and the like).

In the face of national and world needs, fewer and fewer resources are available to
be dedicated to scientific spacecraft. Yet, the need to understand natural phenomena becomes
steadily more pressing, and requires more and better data. ‘1 ‘bus, future spacecraft will need to be
flown more cheaply without unacceptable compromise of science goals or reliability. Cost
tradeoffs will be made carefully, and the price comparisons between technology development and
application versus the use of labor- intensive “known” solutions will neccl  to he analyzed for each
C;;C individually to simultaneously optimize price and science return, IIi~~ler-capabil~ty  commercial
and military satellites will also have technology needs of their own. ‘l%cre will be more synergy
between these dcvc]opments  and the development of scientific satellites.

One major factor in technology requirements for the next set of spacecraft is that
many missions have already been done that are, relatively speaking, technologically
straightforward, leaving the more difficult missions for future engineers. There are two categories
of “difficult” missions: spacecraft to return data from targets that are difficult to reach for some
reason, and spacecraft to return in-depth data from those ta] gets that previously had simple
reconnaissance. The technological c}lallcnges  to fill these two gaps arc somewhat different.

For those targets that have not had simple reconnaissance, the targets themselves
arc difficult to reach for some reason. For example, temperatures might be extreme and distances
for the spacecraft to travel might be great -- for example, a mission to PILl  to. Alternatively, the
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target might be “hard to get to” in dynamic terms, requiring a very light spacecraft, a very large
launch system, or both. Comets, the poles of the sun, and other bodies requiring high energy
trajectories fall into these categories. This implicit] y gives J ise to several cost and technology
drivers: future missions to these targets might be very long and might have to return large amounts
of data at a very low data rate (due to small antennas and power limitations onboard). This
requirement for smaller, lighter and more reliable spacecraft will in turn drive many other
technologies, particularly in the areas of electronics and autonomous operation.

Spacecraft which will perform detailed studies of previously-surveyed targets have
somewhat different drivers. Missions falling into this category are the current Galileo mission to
Jupiter; the 1996-launch Mars Geoscience Surveyor (MGS) and Mars Pathfinder (fig. 1 and its
rover, fig. 2) missions to Mars; and the 1997-launch Cassini  mission to Saturn. These missions
are planned to orbit (or in the case of Mars Pathfinder, land on) planets for a substantial period of
time, taking data with a variety of instruments. Recent earth-surveying and astronomical satellites,
which are trying to take more types of data and larger cluantities  of it, wi 11 have similar
requirements. These missions will also have the problems of planned long data-returning
lifetimes, as well as the need to return very large amounts of data,

In the past it was frequently the case that two spacecraft would be sent to fulfill
essentially the same mission. This would ensure that if one spacecraft failed for whatever reason,
the other would go on to return at least the most critical science data. Alternatively, spacecraft were
flown solely to demonstrate new technology, which would then be used in a subsequent scientific
spacecraft. The NASA “New Millennium” program will attempt to fly “engineering
demonstration” spacecraft, to relieve the inherent problems when “new technology” has to work
the first time and consistently on any and all spacecraft for which it is used.

“New technology” can involve harclware,  such as a sophisticated onboard
computer. Of equal importance, new software technology can fundamentally change the
operational characteristics of a spacecraft. Current emphasis on making spacecraft smaller and
more autonomous is one example of a technology push requiring an overall systems approach to
developing both new hardware and software. In some ways, a return to a more hands-off
relationship with a small spacecraft is a return to the past. ~;arly  spacecraft were tiny -- Ranger 1
was a cylinder eighty inches long and six inches across [1] -- and largely autonomous as far as
their capabilities went. A “computer - sequencer” onboard dictated actions with some limited
cornrnandability  (e.g., Ranger 6 and 7) [2]. Miniscule downlink rates, such as the 8 bits per
second science data for early Mariner Mars and Venus spacecraft [3] also minimized the ability to
interact with spacecraft. A paper in a 1967 conference on the future of spacecraft and ranging stated
that, “Projected scientific instrumentation complements require, even in extreme cases, a maximum
data transmission rate of about 25 bits/see (provided storage of several thousand bits of data
onboard the spacecraft were available.)” [4] The gradual improvement in capability of onboard
computers allowed for the current ability to actively control spacecraft with complex stored
“sequences” and force the decisions faced today on how much to exercise those command links.

2. Anticipated Future Problem Areas

There are two areas that drive spacecraft cost that will need to be addressed in the
future. The first onc is the cost to develop and built the spacecraft itself. The second major driver
of cost besides the hardware itself is the cost of “flying” the spacecraft, including the software
systems to support flight operations. “Concurrent enginceri ng” of both the design of the spacecraft
and the design of the operations system are expected to lower the overall costs of future missions
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by t,aking into account operations costs from the very early stages of a project.

During development and construction of a spacecraft a focus on hardware (and
secondarily, on onboard software) is expected and the spacecraft operations “problems’’(if they are
considered at all) are usually considered with respect to whatever hardware difficulty seems to be
the most important at the time. To anthropomorphize, when the contractor is “pregnant” with a
spacecraft being built, usually the major concerns about its future day to day routine are about any
defects that might appear at “birth” or any “genetic defects” that might appear later, and what those
defects might mean in “day to day living.” However, once Ihe spacecraft has been launched the
preoccupation is with honing its daily routine and tasks and understanding its actual intellectual
capacity and work habits, This changes if it becomes “sick”, particularly in a way that might
leave it permanently unable to perform its planned routine,

Thus, it is often not until a scientific spacecraft is flying that its true identity as a
robot run by software onboard and on the ground becomes more dominant than its identity as a
piece of hardware per se. This has the result that except for dealing with the occasional hardware
failure (and this exception drives many design parameters) the process of flying a spacecraft is in
large part the process of writing “programs” to run it day to day. As such the process is not too
different from the process of software development and shares many of the same problems. Many
software development tools have applicability y to fligh~ opel ations of robotic spacecraft.

In many cases, the utilization of new technology will bc driven by the planned
amount of autonomy either onboard the spacecraft or enabled by its ground support system. To
discuss this further, we need to define autonomy. Most planetary spacecraft are flown by sending
onboard programs , or “sequences” which can control the spacecraft with varying degrees of
ground intervention. However, normally these sequences are deterministic, sometimes to a
fanatical degree, in that extensive ground simulation of every aspect of the execution of the
sequence is modeled and tested on the ground sometimes even before launch. This type of
spacecraft is not truly autonomous, by the definition to be used for the remainder of this paper.
However, these same spacecraft in the face of an anomaly will execute onboard “emergency”
algorithms called “fault protection”. These algorithms will execute. autonomously and
asynchronously in reaction to a perceived anomaly. The interaction of fault protection and
sequences does fit the definition of autonomy to be used subsequently in this paper.

“Autonomous spacecraft” do nc)t necessarily need to have their autonomy onboard,
however. Ilighly automated ground operations can also be developed. Essentially, this implies
leaving the spacecraft onboard control algorithms simple but increasing the development of
automated tools both to prepare commands and to watch telemetry, only rec]uiring  human
intervention when something highly unusual occurs. One can think of this as the ultimate in
distributed computing, with the Deep Space Network and a few billion miles of vacuum taking the
place of the more conventional networking cables. Extreme versions of this paradigm have the
advantage that it allows humans to intervene more easily than onboard autonomy would allow, and
the disadvantage (particularly for long-light-time spacecraft) that a human must intervene in all but
the most basic quick-response situations. Ground-based autonomy, however, is not as practical as
onboard autonomy in fast-changing spacecraft environments.

Figure 3 diagrams the interrelation of onboard automatic)n  and staffing required on
the ground. Since it costs money to develop the automation of spacecraft, software development
costs of the spacecraft itself will increase as one goes to the right side of Figure 3. Since onboard
and/or ground automat ion is relatively new, it is assumed that risk to the mission also increases
somewhat as one goes to the right. This risk can be mitigaled  if there arc also people watching in
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parallel with the automation, but this somewhat defeats the purpose (leading to point E on the
graph,) A complex spacecraft like Voyager that was flown very deterministically  would be an
example of point D during its encounters. However Voyager for its lnterstel lar Mission has staffed
down and made operations more routine and streamlined, moving closer to point A on the graph.
The Magellan  mission to Venus druing its prime mission would be an example of point B: it had a
sophisticated set of anomaly resolution algorithms, but under normal conditions it was flown by a
moderate-sized team. In this era of low budgets and high science expectations, the current trend is
to go towards point C: a capable spacecraft that can “fly itself.”

Figure 3 should really have a third axis: spacecraft capability. It is obviously easier
to get to point A (or C) for a spacecraft with one instrument than for one with twenty. If any
individual spacecraft is smarter and more complex, it will l~robably also be expensive. This means
there will be very few flown, which will tend to drive a project towards point D or possibly E.
This cycle can feed on itself, requiring more and more rigorous testing ,for more and more detailed
flight scenarios as a spacecraft becomes more complex and expensive, and as it is more and more
inconceivable that the spacecraft might fail.

Alternatives are for spacecraft individually [o be less complex and less smart, with
more redundant spacecraft, or for spacecraft to be less complex and srmirter, again with more
redundant spacecraft. Each of these will be discussed ~elow,  in the light of what can be thought of
as “Murphy’s Law of Automation”:

S])acecraft need to become smarter to become mo~ e autonomous. However, the more
autonomous and complex the spacecraft becomes, the harder it is to detertnine  what is
wrong if something does go wrong, and the harder it is to test all paths.

Automation has different benefits and drawbacks for different types of missions
and would have different faces for different types of spacecraft. For example, for “focused
missions” where each spacecraft is relatively simple (although there many be a number of
spacecraft flying and gathering complementary data at the same time) relatively straightforward
automation of many onboard tasks might be possible. When automating a spacecraft, however, it
must be remembered that a large part of the operations of any spacecraft must be driven by the
resources available to communicate with the ground. For example, the amount of science data that
c,an be stored onboard a spacecraft will be driven in pall by how often ii is feasible to play it back
to earth. The exact times when it is possible to play data back to the grouncl will in turn drive how
many science observations may be taken at a given time. 1 f the spacecraft cannot communicate
with earth and take data at the same time (which is often the case) a complex cascade of activity
constraints can result which ultimately are driven by the communication schedule of the system that
is used on the ground. Hence for a simple mission automation onboard might drive towards
repetitive sets of commands that are centered on tk]e times when ground-based tracking is available.

An alternative is for the automated spacecraft to assume that tracking is always
available and to have the spacecraft take its data and return it accepting that some fraction of the
time communication will in fact not be available. Science data would then go into the “bit bucket.”
Since current spacecraft are complex and expensive, the latter solution is rarely used
(intentionally!)  today. However if many spacecraf~ are flying, and each of thcm is light and simple,
one might want these spacecraft to “fly themselves” and return data on a deterministic schedule,
which then communications network schedulers (automated or manual) could optimize around the
best they could. Autonomy of this type would be relatively low-risk, but would work best with a
very repetitive mission. This is in fact not very different from the Magcllan  Venus mission, which
took and returned data on a very rhythmic schedule. There are interesting issues, however, about
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what happens in a scheme like this when things go wrong; see the discussion of “Category 2“
automation later in this paper.

For these autonomy scenarios, another very important parameter is one-way light
time, the time that it takes a signal to go one-way from a spacecraft to the ground or vice-versa. If
one-way light time is short, then it is feasible (thought not necessarily advisable) to “joystick” a
spacecraft and to count on all anomaly recovery to be conducted from the ground. One-way light
time for planetary spacecraft vary widely (fig. 4). All spacecraft at some point have a one-way
light time of zero and progress out to their later large values. Hence a given spacecraft might be in
a different operations regimes at different points in its life cycle. A second related parameter is the
“view period”, the amount of time that a spacecraft is in view of a ground station or relay satellite
from the time it “rises” to when it “sets.” For spacecraft close to earth the light time is negligible
but viewperiods might be quite short. This means that unless a quite sophisticated automated
scheduling system that understands tracking station rise and set is used, it wi 11 be unlikely that a
random time to send back data will in fact be in view of a hacking  station. Also, since signal
strengths are relatively high, earth orbiters create more interference with each other than do
planetary spacecraft if they transmit high powered data at a tracking station that some other
spacecraft is trying to use.

For earth orbiters, the difference between pointing at, for example, Canberra and
Madrid is a very large angle, and if the spacecraft is using a steerable high gain antenna it is
necessary to know not only that tracking coverage is available but on wl~ich  ground (or space)
antennas it is available. However, for long-light-time spacecraft, the earth is essentially a point
source and target, so the spacecraft simply needs to point to “earth”. Antennas on the ground
usually have a distant planetary spacecraft in view for some number of hours. Signal strength is
weak at planetary distances, and there are fewer spacecraft, so transmitting on top of another user
when an antenna is not allocated is not as much of a problem as it is for earth orbiters. However,
the long light times make scheduling complex (for Voyager, for example, uplink and downlink
activities are skewed by the round-trip light time of over fourteen hours).

For complex missions, both for long and sl)ort light-time scenarios, the problems
of full onboard automation become more complex. Since a variety of instruments are being
scheduled, most likely with geometrical constraints and constraints with respect to each other, the
need to schedule tracking coverage as another of the constl  aints probably will raise the complexity
level  too high to realistically be performed onboard, unless all spacecraft communicate with each
other in an automated fashion to get tracking coverage unless radically ncw mission operations
scenarios are developed, However, automation tools on the ground (to be discussed in the
following sections) can reduce the risk, cost and complexity of flying these spacecraft.

Highly redundant fleets of spacecraft have received both commercial and scientific
interest recently. Design of software for these spacecraft has its own particular challenges. For
example, the Iridium commercial system is in the production phase for a fleet of 66 spacecraft to
provide cellular phone service. Teledesic  [5] is proposing a constellation of nearly one thousand
spacecraft for wireless communications of various soils. To take advantage of the commercial
investment in this area there has been substantial interest i] 1 the scientific community for arrays of
spacecraft as well. In the case of a constellation of sc)phisticated autonomous spacecraft, if one
of them failed the others would either need to be sophisticated and fault-tolerant enough to manage
around the failure, or the whole system would nec.d to “go down” or operate in a degraded mode
while it waited for ground intervention. High-reliability automatic routing around failures and
generalized redundancy management is a sophisticated process which can fi~il in a variety of ways,
inchrding’’Byzantinc failure.” An example of a Byzantine failure is a spacecraft in a constellation
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that has an onboard failure, but tells healthy spacecraft that they have failed but that it (the failed
spacecraft) is just fine. Redundancy management and message routing design to prevent or
minimize the effects of these difficulties are areas of cm-rent research for a variety of other critical
applications [6].

3. . Technology for solutions

Based on the above spacecraft taxonomy (simple/complex; short/long one way light
time; single vehicles/cooperating fleets) current and projected technology trends can be examined
to determine which technologies will be available to assist future spacecraft designers and
operators,

The first, and most straightforward, solution to many technical problems can be
borrowed from the insurance industry: namely, to spread cost and risk of future spacecraft among
a bigger group of investors. It will be easier to take technological risks if those risks are small to
any of the individuals investing in the spacecraft. Unilater:il  efforts by one nation or group to build
and fly spacecraft might have a similar ultimate consequence as does the decision by an individual
to buy earthquake insurance from a small California-based company or hurricane insurance from a
small Florida-based company: if they really want to be co~rered  when a disaster comes, their
premiums better be higher than they would if the risk ~erc. spreacl  across a national group.
International cooperation on large spacecraft spreads the risk among enough nations that the loss
of one is less disastrous to any one set of taxpayers. Alterl  latively,  as was the case when Comet
Halley was explored, a fleet of complementary small spacecraft can be sent, one from each
participating country, and any individual spacecraft can bc innovative without risking the loss of all
data if it fails.

Hardware risk is not the only technological risk that a flight project must manage.
Software, both onboard and on the ground, poses its own set of issues. Emerging technologies
offer opportunities to automate many aspects of space operations. } ]owever, the appropriate mix of
automated and manual functions is a complex tradeoff that is somewhat different for each mission,
particularly when it comes to management of risk in different parts of the spacecraft’s software
system. Tools are evolving to make software safer, but it is still necessary to ask: “How much
automation is too much (or not enough?)”

3.1 Artificial intelligence and expert systems

“Artificial intelligence” and “expert systen 1s” are fairly broad terms for automating
functions normally associated with people that are expert in some user domain. A variety of expert
systems arc used for ground support either as prototypes (running in parallel with flight operations
conducted manually) or in some cases, in actual flight operations. Expert systems are in
development or in use both for planning and scheduling (uplink tasks), and for telemetry
monitoring (downlink tasks).

The possibility of automating parts of the uplink and downlink process is very
attractive when missions become very long and it is difficult to keep experts onboard for the
duration of a very long mission. It is also expensive to staff a variety of analyst positions all the
time. Much planning and scheduling for spacecraft tends to be vely repetitive; automating these
repetitive portions tends to make these tasks more error-free and enjoyable for the scheduler.
lhcre are several approaches to automation in the ground sLtppoll  environment, which will be split
into three categories (fig. 5).
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Category 1: Automate the repetitive, time-consuming “general  cases” of-flying the
spacecraft, using a fe w simple rules which flag unusual cases. Use people to recognize
pathological cases and to manage planning in the face of unusual circumstances and anomalies.

Using Category 1 automation techniques has implications for the makeup of the
flight team to run the system. These teams will require a few highly-skilled operators who will run
an “expert-friendly” system. These operators will by and large only make very sophisticated
decisions, and will need substantial authority to effectively manage the unusual cases and use their
judgment. Most flight project automation tools today fall into this category. This category is
particularly useful in cases of planetary orbiters with long-duration science-data-taking missions.
Here, much data-taking is repetitive, but usually just enou~,h  is happening that requires unusual
solutions and tweaks to the pre-launch  plan to keep the ex~wts  busy. Precisely because software
like this tends to be somewhat prescribed in its scope, it is relatively easy to exhaustively test and
understand. This type of automation is sometimes called “incremental automation” since tasks can
bc automated in order of decreasing arduousness to the staff of the project. Many traditional
definitions of “artificial intelligence” and “expert systems” might dismiss these applications as not
part of the domain, but in reality they are capturing knowlc.dge, albeit simple knowledge.
However, since much professional engineering time is spent dispensing routine knowledge over
and over again, simple tools like this if carefully designed can make enormous productivity
increases. %

As a simple example, at the time of its 1992 launch the TOPEX/Poseidon  Earth
orbiter oceanographic project had approximately one contact with a communications relay satellite
(a Tracking Data Relay Satellite, or TDRS) per hour. Explicit spacecraft antenna pointing to an
appropriate TDRS satellite needed to be provided in the spacecraft sequence for each contact, each
of which required three commands per contact. A small program called MAKER was developed
which automatically looked at the allocated relay satellite coverage and generated these commands
(plus some other associated tape recorder commands) thereby saving la.rgc amounts of sequence
engineers’ time. MAKER was delivered just before launch to remove this most tedious sequence
development task. Gradually, MAKER was been adapted to handle more cases, such as the fact
that communication contacts using TOPEX’s omnidirectional antenna (instead of its steerable high
gain) do not require pointing commands.

C’ate,gory 2. Automate the recognition mui management of special cases of
spacecraft operations, so that scarce and expensive exper(ise  can be released after the spacecrrlft
hardware has been completed and launched.

Software in this category captures expert knowledge in its rule base but, to make
the system testable, limits its user interface to a few simple operator actions. This can be thought of
as the “fast-food cashier” model of flying spacecraft, insofar as operators can punch in standard
operations in a relatively foolproof way but cannot override the tool easily to create a special set of
commands. Operators in this scenario will be limited in their actions, with the rule base essentially
having been encoded with the limits of their authority. Any system like this which is actually
producing spacecraft commands constrained by rules or ~,eneratcd in accordance to software rules
must make allowances for overrides by a “super user” for handling of unanticipated situations.
Whether the usual operators will be the ones to override the system clr whether an off-line expert
will be called back in to authorize and make changes will drive the type of user interface and
operators a system like this will require. It is crucial that these staffing assumptions be explicitly
discussed and documented at the software requirements stage for such systems, so the developers
can all have in mind a consistent picture of “their user” (or the privile~c  and access differences
between their two types of user) from the very beginning of the software life cycle.
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A second type of “category 2“ system can be an advisor to operators making
decisions. In its simplest form, on-line help files for a spacecraft command system’s command
functions can be thought of as a primitive system of this ty~)e.  Since these systems are only
advisory, they do not need extensive user override capability since they are not in-line with the
production of spacecraft commands or processing of data.

An often-unexpected implication of the insertion of a systcm like this into a process
(particularly if the process was manual before) is that the automated system, unlike a human
expert, cannot gather information by running into people i] i the hallways. An automated system
often requires much more explicit and precise information than would a human expert, who can
make assumptions. This more explicit and precise information if regular] y given to a human
“expert system” would probably also result in fewer problems “slipping through the cracks.”
However, care must be taken that the effort to gather infornlation  for the automated system to make
its decisions is not greater than the effort to make the decisions manually in the first place would
have been. This frequently involves careful coordination of previously disparate electronic systems
to bc sure that the information that would have flowed to an expert  formally or informally flows
between electronic counterparts in an accurate way. Setting up a system like this is particularly
cost-effective for lengthy missions, particularly ones with very long low-activity or repetitive
periods. It is also advisable for the whole ground syst$m to be engineered to allow this type of
automation from the beginning. Increasing sophistication of knowledge capture and testing
techniques will allow these systems to be easier to build and hence to be worthwhile for smaller
and smaller problems. They will also evolve to have more powerful and flexible user interfaces,
ultimately evolving into the next category.

Recent discussions of automation in aircraf[ “glass cockpits” [7] on which type of
Category 2 assistance (advisory or controlling) is more appropriate for pilots have resulted in
various different design philosophies at major airframe manufacturers. Airbus has trended more
towards preventing inappropriate pilot actions while Boeing has used autorhation  more as a reducer
of pilot workload. Since pilots can be confused about what an autonomous aircraft is doing, the
more aggressive Airbus automation has been cited as a possible cause of accidents [8]. Airbus
designers counter that pilots were not using the automation adequately [9] . Boeing has tried to
keep the “feel” of its traditional aircraft, even in its new 77’/, to give pilots as many instinctive cues
as possible in case they need to take over from the automat cd system [10].

Category 3. Build a Category 2 sysiem to talk to a Category 1 system more or less
directly to completely automate the process of building convncmds or wa(ching  teleme~ry,  with
infrequent human intervention.

Tools in Category 3 would take the place of large numbers of human operators, and
might enable one expert operator to manage several spacecraft at once, only intervening in highly
unusual situations requiring sophisticated judgment. A problem for critical Category-3 software is
that test and validation tools need to be developed that make project management comfortable with
completely trusting such tools, particularly as stand-alone tools without human intervention.
Efforts in this regard will bc discussed under the topics of specification and verification,
simulation, and test below. The knowledge-gathering and encoding issues for Category-2
software arc amplified even further in this type of tool.

A variety of tools for mission operations thiit are mixes of Category 1 and 2 have
been developed, some of thcm with eventual aspirations towards Category 3. These tools are
intended for usc in the areas of planning, scheduling, and tclemet]y moclcling  and analysis. Many
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excellent groups are working in this area, and any samplin~  will be incomplete. However, the
following touches on most of the major categories of tool aud the issues involved in generating
tools that users will accept and not defeat. The impact a variety of automation tools on the office *
environment [11 ] has some interesting parallels that shoulcl  be noted by managers deciding on the
correct level of autonomy for their space and grouncl systelns.

An expert system for planning and scheduling of sequences, PLAN-IT-2, is under
development at JPL [ 12]. This system (along with its predecessors, PLAN-IT and DEVISER)
was intended to create software which approached planning and scheduling in the same way that a
human scheduler does. In particular, it attempted to simplify the process of resolving conflicts.
PLAN-IT-2 had as a major goal the avoidance of the phenomenon common to some automated
systems that they tend to either do “too much” or “too little” to the schedule generated by the tool in
the face of a new activity added to the schedule. PLAN-IT-2 also has as a design goal that it be
relatively simple to adapt for different missions, which will be very important when a variety of
small missions are all flying at once and a system must be easy to modify from mission to mission
to make automation and knowledge capture for this Category 2/3 system “worth it.” Planners need
tools with “what-if’ type capability as well, and tools like I’LAN-IT-2 make it less arduous to try a
variety of approaches for optimum science data return, resource usage., or other goals.

In the real-time control area, a set of to~ls that started out as Category 1 incremental
automation tools are evolving into Category 3 connected uplink and downlink  tools. This object-
oriented system, called MGDS (Multi-Mission Ground Data System) [13] initially consisted of a
few programs to generate sequences of events and timelinm for real-time operations personnel (as
opposed to tools for planners.) The real-time area has somewhat different drivers than the
planning area, and prior to the development of these tools there was a largely mission-specific set
of utilities that were somewhat of a patchwork. The Opcrat ions Engineering Laboratory (OEL) at
JPL has gradually built up the MGDS set of tools to inclu(ie editors, programs to strip out items of
interest to certain users of a sequence of events, and the like. Eventual 1 y, they hope to link
monitoring of telemetry (downlink)  with command functions to truly automate many of the
functions of real-time operations.

Spacecraft experts also need tools to assist them with understanding exactly what is
planned to occur on the spacecraft as well as what is actually occurring. Several systems to
support some combination of real-time on-line spacecraft controllers and subsystem analysts are
currently being pursued at JPL. One, the Multimission  Automation for Realtime Verification of
spacecraft Engineering Link (MARVEL) system [ 14] is designed to monitor spacecraft telemetry
and flag departures from expected behavior. MARVEL has been used in spacecraft operations
since 1989 on the Voyager project at JPL. MARVEL. combines the use of AI programming
techniques with conventional software methodologies, using the technique that works the best in
given situations. Initially, MARVEL modules monitored lelemetry on a subsystem-specific basis.
The program, however, is evolving into being able to flag more system-wide anomalies and to
create more links between uplink and downlink tasks to reduce analyst workload.

SELMON (“Selective Monitoring’’)[l 5] is a software monitoring system that can be
used either on the ground or onboard a spacecraft to detect anomalies more complex than checking
that a value is not out of predefine constant “alarm” bounds. SELMON looks for unusual
readings from sensors (“unusual” being defined against a variety of modeling and characterization
techniques). Once a possible anomaly has been detected, SELMON determines what parts of the
spacecraft have likely been affected by an anomaly. SELMON is currently being used in parallel
with a flight system in Johnson Space Flight Center’s new mission control center, and is under
evaluation for a variety of other applications, including o!lboard applications for the proposed Pluto
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Express spacecraft.

The Engineering Analysis Software Environment (EASE) [16] is an environment
for development of subsystem-level engineering support tools to analyze telemetry and to review
commands before they are sent to the spacecraft. EASE is intended to be common across several
missions to enable specialist subsystem engineers to support more than one mission at a time, thus
reducing costs to any given mission.

3.2. Scheduling Network Resources

The above tools are aimed largely at the users of a particular spacecraft, as they
perform the tasks required to fly their machine. However, automation is also crucial in scheduling
tracking resources. As has been mentioned above, the availability of resources to return scientific
and engineering data or tracking data to the ground often drives schedules for the spacecraft itself.
Tools exist both at the user level for determining what resources are desired and for processing the
returned data, and at the level of the networks themselves. The rhythms of the major tracking
networks’ scheduling process drives many other processes in the spacecraft mission operations
arena. Two major networks in use today, the TDRSS (Tracking Data Relay Satellite System) and
Deep Space Network (DSN) have fundamentally different approaches to scheduling antenna time
for their users. The differences are illustrative and bring out important distinctions between
different types of appropriate automation under different circumstances, even though superficially
the problem being solved might be the same.

The DSN has evolved a system of what car) be thought of as “distributed
scheduling,” Initial forecasts (from requests made years or months in advance) are put together
central] y and distributed. The initial forecast in its entirety is then sent to all schedulers for all
projects using the network. The schedulers then trade amongst themselves for any other coverage
they may need. If disputes arise, the project line managers become involved, not the DSN. This
works for planetary spacecraft where coverage times are very long (eight hour viewperiods are not
uncommon), needs are frequently known very large periods of time in advance, and all users are
civilian. The automation tool to manage the schedule at the DSN so that the antennas know their
schedule is called RALPH [17]. RALPH generates the initial schedule from agreed-upon user
rules, and users interface with RALPH to change schedules if they have agreed to swap time or
give it up. Late-breaking changes are usually handled verltally. A DSN contact cannot be
scheduled too close to its use, (typical project requirements for emergency passes being in the hour
or two range) since the process of setting up for a contact is quite manual and different for each
spacecraft user, although normally users will stay within special “keywords” that define a standard
configuration for thcm. A given DSN contact may have a 1,arge variety of activities in it, specified
by a combination of “keywords” . However, this largely manual process makes the system able to
deal with emergencies, unusual situations, and the occasional very demanding signal-to-noise
situations of planetary spacecraft that might be hours and hours of one way light time away.

Scheduling TDRSS for earth-orbiling  spacecraft is fundamentally different. Users
schedule time on one of two active TDRS satellites in earth orbit. Since there is a requirement to
support both open and military users [18] all users cannot see the. whole schedule. Thus, the
schcdu]c  stays centralized at all times. Further, since earth orbiter view periods are often quite
short, earth orbiters use many contacts per day. ~’he closeness of earth orbiters (with negligible
one-way light time) also leads to a more volatile scheduling environment. The system is also
shared with the Space Shuttle, which leads to even more variability if Shuttle launches slip. The
centrali~,ation  and sheer volume of contacts, and the tendency for change have lcd to a very
different cnviromncnt  from the DSN. TDRSS users develop their scheduling requests and send
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them in to a central point electronically. TDRSS’S internal scheduling then develops a forecast
schedule, with some combination of verbal and electronic interaction with users. Users must ask
for each and every contact explicitly . If changes are desired to a scheduled event, a user talks to a
central scheduler and then electronically adds or deletes events as appropriate, which are then
centrally confirmed or denied. These events must be taken from a pool of acceptable “configuration
codes” which are agreed upon in advance. However, changes to a schedule using these
acceptable codes can be made in emergencies up to just a few minutes before an event [19].

A user scheduling resources with the DSN will need different tools than will one
scheduling TDRSS, since the software systems on the other end are so different. Users interfacing
with the DSN’s RALPH to date have had relatively simple tools, since the number of contacts is
manageable and RALPH requires a straightforward ASCII request line per contact. Most of the
negotiation process for DSN takes place off-line, and the li~htness of the electronic interface
reflects this. Real-time detailed instructions are somewhat separated from the scheduling process:
these instructions are prepared in a “keyword file”.

For TDRSS scheduling, more information is provided by the user, the format for
submission is complex, and the users work in isolation fro:n each other. One tool for users to
schedule TDRSS has been developed by University of Colorado at Boulder. The TDRSS Resource
Users Scheduling Tool (TRUST) [20] evolved from t$e OASIS planning and scheduling system
tool [21 ] and is currently in use by the TOPEX/Poseidon  project at JPL. TRUST allows a user to
create and manage a set of TDRSS schedule requests (for the first six months of the mission, about
160 contacts per week, each contact made up of three sepal  ate TDRSS services), and checks user
schedules against a set of rules in an expert system. It has an electronic “mailbox” that holds
schedule deletions coming in from the electronic interface on the TDRSS side of the system, and
alerts a user that there is incoming traffic if necessary. Adcl itional  interfi~ce  tools have largely
automated the generation of the initial input schedule, exce~]t  for the occasional “special request”
for a specific spacecraft activity.

Recently, it has been discussed that it wouki be to everyone’s benefit if all tracking
networks could be “interoperable”, meaning a user would schedule more or less functionally and
any available tracking resource would fill the need. Obviously, many of the issues involved in
building such a system will require careful thought and analysis of the different requirements that
have driven the current variety of scheduling systems, TOPEXIPoseidon  during its launch period
used both the DSN and TDRSS, with contacts from the two networks interleaved, and interesting
scheduling issues arose because of the differing approaches and lead times for the two networks.
Since data coming into the project was quite different in format from the DSN and TDRSS,
complex communications networking and configuration issues needed to be addressed and tested.
Writing a “script” and schedule for all parties to accommodate the differing approaches to launch
slips and contingency plans showed that while a given spacecraft under special circumstances can
be “interoperablc”,  users will need to be flexible and be able to think in several vernaculars to do so
for the foreseeable future,

A problem that arises when one tries to create encodccl  rules for scheduling any
restricted resource (such as antenna time, science c)bservations, etc.) is that the rule developers
need to get the users of the resource to agree to the written. down, encoded rule that will always be
followed by the software in generating priorities, I~requentl  y human schedulers and negotiators
will “horse-trade” resources to each other with the understanding that “next time they will be paid
back.” This is difficult to encode in some absolute form, and is a closely related problem to the
difficulty mentioned above for fully automated systems that “can’t run into the other automated
systems in the hall.” Finding the correct level of automatic while understanding that at some
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point human intervention may be necessary to soften some of the “absolute encoded rules” is a
key to user acceptance and long-term viability of such a system.

3.3. Onboard  automation issues

What does automation ultimately mean for a “spacecraft user”? If spacecraft is
“fully automated” who is “the user”? Should an autonomous spacecraft “do science” and just “call
in” if it finds “something interesting”? (How would communication antennas on the ground know
this?) These questions have partially been addressed previously in this paper. However, any
attempt to truly automate onboard will need to address these issues early in their overall software
design. The ground system automation, if any, will need to flow information smoothly from the
onboard system.

One particular issue out of these general ones is: what at does it mean to “sequence”
an automated spacecraft, particularly one in an unpredictable environment? A regime in which this
is particularly interesting is for a planetary rover at some appreciable light-time distance. For
rovers, some of the when-is-automation-worth-it arguments become somewhat reversed from
other spacecraft. For many spacecraft in a relatively benigri  and predictable environment, onboard
autonomy means a lot of information needs to be provided to the system from the ground to
achieve goals, However, a rover which is spending a lot of its time dealing with a local
environment in turn would have to pass a high bandw;dth  of information back to earth (thus
requiring a lot more tracking network scheduling, thus requiring more scheduling on the
ground....). However, rovers are also operating in a more difficult-to-predict environment than is
a spacecraft in orbit and so it is more difficult to define all cases, and so automation tradeoffs must
be undertaken particularly carefully here.

Ironically, in current spacecraft, there is one area of onboard “autonomy” which is
more or less generally accepted: the “save-yourself” routines of onboard fault protection. This
means that most onboard automation is designed for the til nes when the spacecraft is the least
predictable (i.e., in the presence of at least one and possibl y more faults.) If onboard automation
can be trusted during anomalies, why not for routine work? Fault protection is supposed to be
“reflexive” act ion of the spacecraft for which there is no tif ne for ground intervention before
spacecraft damage would occur. Other spacecraft actions are “voluntaly”  and as such can wait for
human intervention. A future trend might be to allow more and more routine spacecraft operation
to fall into the realm of “reflexes” and fewer and fewer under direct gl-ound  control. The fact that
onboard automation has dealt with many spacecraft anomalies over the years is also a powerful
argument to counter the legitimate concern that in the presence of a cascade of anomalies the
onbo,ard  system might not be able to cope. A spacecraft, no matter how autonomous, will always
have to have an “I give up” mode in which it determines i[ is hopelessly confused and waits for
help, and if it is talking to an autonomous grouncl system that system as well probably should kick
in a “human needed” alarm at that point as well. q’he discussion of what “that point” is in an
individual case will drive many ground and spacecraft design discussions in the coming years.

3.4. Navigation and autonomy

For current interplanetary spacecraft, it is frequently the case that navigation
(knowing where the spacecraft is) is done on the ground, while attitu(ie determination (knowing
how the spacecraft is pointed in three-dimensional space) is done largely onboard or a mixture of
onboard and ground-based. Particularly for spacecraft with high navigation precision
requirements, large amounts of tracking data may be requ i red. An autonomous spacecraft would
probably still need some navigational updates from the ground, although there is now discussion
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of various techniques for purely onboard navigation. However substantial requirements for
onboard navigation capability or complex attitude determination situations might drive up onboard
computing requirements and complexity, with consequent increases in complexity of other onboard
software.

3.5. Simulation

Since many spacecraft to date have been flown in a very non-autonomous way, it
has been very valuable to simulate very precisely what is at)out  to occur onboard the spacecraft,
perhaps at the bit level. Spare onboard computers can also be used to run sequences before they
are sent to the spacecraft to check for logic errors. This sort of very detailed simulation is excellent
for ensuring the success of one-shot encounters that must 1 lot fail if science data is to be taken
(such as the Voyager planetary encounters, or the orbital insertions of the Magellan Venus orbiter.)
It is also useful for validating a routine set of repetitive con Imands  tha( will then be used over and
over again for taking data. As onboard processors get mole and more powerful, however, it gets
harder and harder for a ground based processor to run faster than real-time and to “keep up with”
simulating al 1 processes before they are sent to the spacecraft for execution.

Simulation for an autonomous spacecraft might be thought of as more of a “trainer”
for the spacecraft than as a “simulator” per se. The cu{rent  practice of tlying  to simulate every
spacecraft action is like trying to simulate flight 847 from 1.OS Angeles lnternatiomd to New
York’s Kennedy Airport on Tuesday December 12-- it cannot be done to any valid level if the
environment is not fully predictable. Flight simulators try to go through every “path” a pilot’s
“software” might reasonably be expected to experience, w] Iich might be a better model for
autonomous spacecraft. This means that simulators would be used mostly pre-launch,  or to test
changes in onboard autonomous algorithms.

3.6 Software test and validation

To determine the correct amount of automation it is necessary to define the areas in
which software is a possible risk and to examine whether that risk is acceptable. Software by its
very nature is difficult to test completely, since it is very difficult (if not impossible) to anticipate
every situation that will occur in the life of the software, including all the possible overlaps and
combinations of special cases. At the moment, since software tends not to bc fault-tolerant and to
be very non-physical, the safety of complex systems can hinge on single logic branches that are
incorrect. A variety of researchers have worked for some time to understand the problems inherent
in real-time control software (such as a spacecraft flight software and sequence.) There are
discussions of the issues and relative merits of different testing techniques for various situations in
Nancy Lcveson’s  work[22].

SOmc other techniques with application to determining the correctness and safety of
a set of spacecraft commands is described have been developed by Robyn  1,utz [23]. These
techniques allow algorithmic checking of one or more asynchronous processes against tinle-
dcpcndcnt  constraints. That is, in a spacecraft example, if a sequence (one process) was running
and three or four fault protection routines (three or four other processes) kicked in for some reason
asynchronously, these techniques could tell a user if any user-specified time constraints would be
violated. The user would specify constraints in the nature of “component A must not turn on within
five minutes of Component B“. These techniques could determine if there were any combinations
of start times of the processes which would then violate these constraints. Test techniques like
this may make spacecraft designers more comfortable with more asynchronous, autonomous
onboard operations.
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Another validation technique is formal specification of a flight system. Projects
typically develop “flight rules” (a subset of which are the type of tempor:tl  constraints alluded to
above) which are then checked by some means before corn] nands are sent to a spacecraft.
Techniques for specification and verification of software ale being developed in many quarters to
deal with issues of validating critical software, These techniques are being implemented to check
flight rules of spacecraft [24], A finite-state-machine model of the instrument is developed. The
states of the spacecraft are the states of the finite-state machine, and spacecraft commands cause a
spacecraft to transition between these states. The tinite-state machine representation can be made
into a table of states and commands, called an “action table”, which can then show what happens
for each command in each state. Using these representations, constraints can simply be stated in an
English-1ike form. This representation also lends itself to ease of entry of constraints and models,
making it possible that there could be personal automation tools which each analyst could easily
modify to do his or her own checks, analogous to a spelling checker in a word processor which
has everyone’s own particular words, acronyms, etc. encoded in it. A version of this system,
called the Specification and Verification Environment (SAVE) has been implemented on a parallel
computer and is currently being implemented on a sequential computer to verify TOPEX/Poseidon
sequences before uplink  [25].

3.7. Distributed and parallel computing and advanced networks\

Automation tools on the ground or in space may require substantial computing
resources. Higher computing speed in ground systems allows users a means to get away from
“batch processing” of spacecraft command files. If verificat ion and validation tools for spacecraft
commands are fast enough to be interactive, then users will tend to allow a machine to do checking
for thcm and will be able to use their own time more effectively. This is analogous to the days of
programming on cards. When a large batch run would take overnight, users would spend a lot of
time tinding their own syntax or logic errors on cards before handing them in. Now, most
programmers let compilers find most of their syntax errors without lengthy  searches through the
code.

Recent trends indicate that a cost-effective, fault-tolerant method for obtaining high
computing power is to use distributed andlor parallel computing. Distributed computing uses
several workstations or other computers, each of which is somewhat autonomous, to solve a
computing problem in concert. Parallel computing also uses several computers in concert to solve a
problem, but usually in much more tight synchronization, and usually with just one interface for a
given user, Many computing problems in mission operations lend themselves to parallel and
distributed inlplementations  [26] [27] and some implementations of prototypes have been achieved.
More will be expected as more programming tools are available and wider acceptance of these
computing systems occurs.

There has been much recent interest in distt ibuted mission operations as well [28].
In a distributed mission operations environment, different ~)ortions  of the flight team reside in
different geographical areas. If the operations team becomes very scattered and many projects
begin to operate this way, a demand for high-speed and high-banclwidth  networks will arise to
carry all the data and commanding, Electronic mail and other efficient means of canying
information quickly to dispersed individuals will also see an increase in clemand  in this
environment. Security issues will become very important as well to prevent unauthorized
commanding or interruption of the legitimate commanding process. For small missions, to
distribute or co-locate the operations team will begin to be a very important trade and cost driver
since even a very efficient distribution system costs something and requires some amount of central
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coordination. It may evolve that small missions will all shal  c common central coordination
facilities, with some of their operations teams remaining at their home institutions.

A final  challenge to the automation community is the need to come up with newer
and faster algorithms for autonomous systems. The computational fluid dynamics community has
for some time been limited by the hardware available for compute-intensive three-dimensional
modeling. It has often been pointed out that computing speed due to hardware improvements alone
has been nearly exponentially increasing for many years. }Iowever,  it is less well known that in the
scientific computation community, computing speed improvements have been increasing
independent y more quickly due to algorithmic improvements alone [29]. Search and reasoning
algorithms need to have the same kind of “grand challenge” emphasis placecl  on them as has been
placed on the more traditional finite-difference and finite-element methodologies in “scientific
computing” to enable autonomy with reasonably sized computing hardware, particularly fault-
tolerant parallel and distributed hardware,

Novel hardware and new microelectronics also may have revolutionary impacts on
future spacecraft. For example, neural networks computing chips might allow for innovative
reasoning and sensing algorithms. High-speed massive memory onboarcl  might allow for high
flexibility of data return compared to the current slow tape-management systems required. More
fault-tolerant hardware and software might enable missions that might be too high-risk otherwise.\

3.8. Data archive, retrieval and visualization

One frequently-neglected technology area that can make an enormous cost
difference to a project is the choice of technology to save science data from the spacecraft and
make it accessible-to scientific users. As more and more spacecraft start flying, and each of them
produces more data, reliable and inexpensive storage technology will become a larger fraction of
the cost of an individual project. Database management techniques and high-speed access devices,
as well as compact media, will be essential to avoid drowning future generations in seas of
obsolete-format magnetic tape !

3.9 Microspacecraft

Another technology area is the use of micmspacecraft  (fig. 6) . Since these
spacecraft have very severe limitations on power, mass, and volume, much advantage can be taken
of judicious usc of new technology. Since part of the idea is that there bc large numbers of these
spacecraft flying at once, it would be helpful if each of thel  n did not need excessive “care and
feeding.” This would tend to drive toward some autonomy, and since the spacecraft will be simple
quite high degrees of autonomy might work well in this area.

4. Conclusions

This paper has summarized some existing trends in spacecraft mission operations,
particular in the areas of autonomy and ground software. Some major themes have arisen in the
course of this discussion. One is that it is essential when developing a mm-e automated or partially
automated system that the entire encl-to-end  design be considered, including designing spacecraft to
be easier to fly (and to diagnose during failures). Although this paper  has focused more on the
uplink operations, it will also ease automation of downlink operations if data collection can be
designed so that data is easier to process, analyze, distribute and archive. This link between uplink
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and downlink design will be crucial in new, complex yet cost-conscious spacecraft operations, and
wjll make it more and more essential that all hardware and software rec]uirements  are clearly
defined early on in the design process.

I

As robot spacecraft get smarter, flying them gets more and more like training a pilot
than programming a computer. The community must estabhsh  that the pilot is “trained”
adequately and have the “training” and “continuing certification” costs be more like that of a
Cessna pilot than a space shuttle pilot. Interfaces with any remaining human users must be
considered as well [30]. The research community needs to concentrate effort on the technology
areas outlined in this paper, as well as many others, for this to happen.

Finally, the research community cannot develop technology alone. The flight
community must make their technology needs clear, and then accept solutions as soon as they are
reasonably mature. A similar relationship exists between clinical medicine practitioners and the
research biomedical community. Normally, a general practitioner is a long time removed from
current laboratory results, and is somewhat dependent for dissemination of results from
laboratories and approval of new treatments after cljnjcal tlials by the FDA. In fact, it is difficult if
not impossible and illegal (particularly in the current malpractice environment) for a clinical
practitioner to sjmply try most new techniques, even if he or she were aware of them. The
biomedical community relies heavily on progr,ams  to conduct clinical trials that cross over from the
research community into cljnical practice. Recently, the customers of the cljnical  world have
complained that the process of moving new technology is taking too long, is too unwjeldy,  and too
expensive.

I
Flight operations needs to develop its own high speed system of allowing “clinical

trials” of new technology. There must be new technology incentives for flight projects, so that
managers are not afraid of “malpractice” problems should they try a new approach. Right now,
crossover research and operations organizations tend to be somewhat homeless and lacking in real
positions on either side of the fence. There are several reasons for this, in addition to the direct
analogies to the medical situation. Research organizations tend to be small organizations with much
emphasis on publication and on novelty of algorithms and concepts. There is a strong connection
of individuals with concepts, and usually only funding fol small prototypes of any idea.
Competition for funding is intense, and hierarchy and forlnality  of organizations tend to be
minimal.

Operations organizations, however, are designed to bc hierarchical and to
somewhat rigidly define functional boundaries to avoid cl laos, since most flight projects are very
large compared to most research endeavors and hence need more structure. However, this means
that researchers with ideas that would, for instance, consolidate five flight functions must gain
acceptance by all users all the functions. Then, the different organizations would need to decide
which of the five organizations would now run the consolidated tool. Needless to say, this is not
easy, and automation efforts in particular sometimes die since they are not accepted by enough
parts of a system to be “worth it.”

Similarly, flight projects tend to think in terms of “positions” instead of individuals,
and frequently documents are unsigned or signed by an organization. ‘1’hjs means that publishable
work (usually, the only recognition of legitimacy h the academic world) will frequently be lost by
a research person who lives as part of the necessarily-large team on a flight project for any length
of time. Likewise, a flight project person who moves to do research for a while may be viewed as
without adequate “real” experience to enter flight operations at a level similar to the one he or she
occupied in an academic setting. This makes jt very difficult for people to transition easily back
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and forth to make academics aware of “real problems” and flight projects aware of the availability
of technology that could be transfemed.

There are no easy answers for these cultural difficulties, and the only long term
solution is open-mindedness and willingness to take chances on both sides. It is essential for the
future of mission operations that these cultural differences be worked out. Similar dichotomies
exist in most industries, and the competitiveness of our space program and the rest of our economy
depend upon it as we move into the next centuly.

5. ‘I%e Future

Automation is an area of significant effort ill a variety of sectors, and hence it is
difficult to reliably predict where the field will be in five, ten, and fifteen years. However, the
sheer number of spacecraft being launched in the cornmerci al sector would tend to indicate that
some spacecraft-management software will be developed in the short term (5 years) to allow large
constellations to be managed by a reasonable number of people. Whether this software will be
ground or space-based is less clear, however. Commercial satellites are in earth orbit, where the
light time is short and the disadvantages of ground-based automation are few. For planetary
spacecraft, the trend is for more aggressive onboard automation. Some of the technology
developed over the next five years for planetary spacecraft -- for onboard navigation and attitude
control, for example -- may then migrate to the earth-orbiter sector over the following five years.
If significantly more compute power is available over time, more automation might begin to
migrate onboard, leading to the possibility of “no-uplink” spacecraft for some applications in the
fifteen-year timeframe.
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FIGURE CAPTIONS:

Figure 1. The Mars Pathfinder lander and rover.

Figure 2. Closeup of the the Pathfinder rover.

Figure 3. Trends in automation level and associated parameters.

Figure 4. One-way light times at some mission times of interest.

Figure 5. Categories of automation systems.

Figure 6. A microspacecraft.
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